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THE SINGULAR PROBLEM OF THE THEORY OF ELASTICITY FOR A 
SEMI-INFINITE RECTANGULAR CUTOUT* 

V. D. KULIEV 

The singular problem of the theory of elasticity is considered in the case of a 

semi-infinite rectangular cutout on the assumption that the cutout surfaces are 

free of stresses and that elastic asymptotic behavior of normal rupture cracks 

obtains at infinity. 

method. 

1. Consider the following 

(fy = TXY 2 0, B =&I/*, z< 0, 

The solution is constructed by the Kolosov-Muskhelishvili 

singular problem of the elasticity theory: 

Gz=Txv=O. iyl<l/e, r=o, TX!,=O, v=o, y=o, z>o (1.1) 

- 
d” = K, l1/2nz, y=o, z-.x? (1.2) 

where 0,. a,, ~~~ are components of the stress tensor, u and u are components of the displace- 

ment vector, and K, is the stress itensity coefficient for normal rupture cracks, which 

defines the stress and strain field at an infinitely distant point. 

This boundary value problem belongs to class N in which the Saint Venant principle is 

not satisfied and a nontrivial solution of homogeneous problems exists (unlike in class S of 

classic problems of the theory of elasticity in which Saint Venant principle is validandonly 

a trivial solution of homogeneous problems exists). The general theory of these problems is 
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given in /l/, where it is shown, among other things, the S and N classes are equivalent with 
respect to strength. 

The boundary condition (1.1) may be written thus /2/: 

I 
'PI (t) + tp, (t) i- % (t) = 0 onL (1.3) 

The contour L is shown in Fig.1. 

Functions 'pl(z) and q,(z) are holomorphic in S and in accordance with (1.2) 

'pl (2) = li, 1/z / (2n), Y, (2) = --zQ,' (2) (2 - co), aD, (I) = VI' (2,. Y, (2) = *I' (2). z = 1: + iy (1.4) 

We derive the solution of this problem using the method of conformal mapping. 

2. Let us determine the function which maps the interior of the unit circle 151<1 of 
the plane 5 onto the exterior of the semi-infinite rectangular cutout in the I -plane (Fig-l). 
Using the Christoffel-Schwartz integral /3/, we obtain 

We expand function E := o(j) in series in the neighborhood of c=o 
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0 (5) = (1 i_ p 22 T,[“’ , T, = B - ‘Is, T, = 2B, T, = B -I- C, / 2 

k=0 

(2.2) 

G Ck-3 c,_, ch.-, 
TS = C, f - 3 9 Tk==h-_2~k2k-_1+--jr (k > 4) 

B=C/A, C = n.’ [Arab (1 + v/2, ~- 2’,’ (1 -f 1/2)“‘>1 

A = --n-‘2*‘* (1 + v/2)” ‘, Ch. = P,; + Qh. 

k 

Below we use the method of Savin /4/. Rejecting in expansion (2.2) all terms beginning 

with T,+15”+‘, we obtain instead of o(5) some function _ e,, (s). The function en(C) maps the 

inside of the unit circle 1 cl<1 not onto the specified region S, but onto the close to 

its region S, which is the closer to S the greater is ~1. In conformity with Savin's 

method we represent the function ~(5) in the form 

The contours of the cutout corresponding to n= 10 (curve I) and n= 50 (curve 2) are 

shown in Fig.2. 

3. We denote regions 1 c[<i, and ICI>11 respectively, by I+ and I-, andthe circ 

]5]=1 by Y. We take as positive the direction of moving along y for which region I+ 

remains to the left. 
The boundary condition (1.3) after confonnal mapping assumes the form 

le 

cp (0) + 2$ (p’ (G)+ T(Z) = 0 on y (3.1) 

Functions (p(5) = %I0 (C)l, and $(C) = $+ [o(c)] are homomorphic in I+. As 5 approaches (from 

inside V) the point -_l,these functions behave in conformity with (1.4) and (2.1) as follows: 

1 
9 (5) =-i_ 'C (i) (i-, -. 1) (3.2) 

We seek functions ~(5) and q(c) which are holomorphic in I+ of the form 

(3.3) 

*=o 

Multiplying (3.1) by (d+ i)dd/]Zni(U- 511 and integrating with respect to Y (I 5 I i 1)) we 
obtain 

I, + I, + I, = 0 (3.4) 

According to Granak's theorem formulas (3.1) and (3.4) are equivalent. 

Let us consider the integral I,. Formula 

may be considered as the expression for the boundary value of function 

It is regular in B- and continuous in Z- ty, except at point 5 == 53, where it has a pole 
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of order n - 1, and in X- is of the form 

n--l 

n--m 

b,, = T7, > b,2, = T,- x Fkb,+,, m = (11 - I), (n - 2), (n - 3), ., 0, rk = (k f f)qkTk+l + @ - 2)Tk 

k=l 

( 1, k<n-1 
qk= 0, hzn 

where O(Ii 5) is regular in Z- and vanishes at infinity as a part of function (3.5). 

Using the properties of the Cauchy integral /2/ and formula (3.6), we obtain 

(3.6) 

(3.7) 

Let us consider the functions 

The function (d -!- l)cp (a) reuresents the boundary value of function (P*(C) which is regular in 

S+ and continuous in Z+; y, and function (a;l&(l/ d) represents the boundary value of func- 

tion 6: (1 1 i) regular in 'c-and continuous in S-+r. 

From this, using the properties of the Cauchy integral and (3.3), we obtain 

(3.8) 

Using formulas (3.4), (3.7) and (3.8) for in 2+, we obtain 

Equating the coefficients at ck(k = 0,1,2,...) in both sides of formula (3.9), we obtain a 

linear homogeneous algebraic system of equations 

a,+M,+iI=O, au + Mk = 0 (k = I, 2, ., (n - i)), a, = 0 (m > n) (3.10) 

On the other hand, as c- --1 (from inside y), we have in conformity with (3.2) and 

(3.3) one more relation for the unknown constants 

(3.11) 

k4 

Analysis of the system of Eqs. (3.10) and (3.11) shows that all unknown constants are 

real. We, thus, have a system of n+l equations for the determination of n+i unknownreal 

constants C1, aO, aI. ., a,_,. The system of Eqs. (3.10) and (3.11) may be written thus: 

n-1 

c ((6 i)“‘b b+l -t Pm.-/; i- q,_,+k h,,*(“l - I) b,+l+k + "'b,+kl) “m = 
Jfa (1 i- r/z, 

II ICIbk+l. lill.2,. ,(n-i) 

m=1 

n, = (I, ./- a,1-, / b,,, c, = -M, - a,, 

Y *- 
i 

0, ,,I .= n I< 
.J 

1, “2 : ,, 
111 1, ,li r n - 1. 1 ’ 

?‘m_h. = 
(0, 171 + k 

q”z-n+k= 
i 

1, I,, _ I, -~ h 
0, mjn_-h 

Using formulas (3.3) and (3.10) it is possible to represent the function ~(5) as 

n-1 

9 (9 = I+ 5 k=. -L &,‘p (3.12) 
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Let us determine the function IQ(C). Formulas (3.4), (3.7), and (3.8) yield 

11-I 

c, - (i + 1) rl, (+) + c M&” ~ (; + ‘) “1(c) '0'(1&) cp’ (+) = 0 

k=0 
(3.13) 

Finally, using (3.9), (3.12), and (3.13) we obtain the function 

The stress and displacement field is determined using the Kolosov-Muskhelishvili form- 

ulas. 
The stresses determined on a computer for A',= -i and II= 50 are tabulated below 

10% 17 174 244 272 270 307 37i 3!J!l 406 
103u 835 61:) 418 211 0 G78 444 220 0 
10$ 561 737 iFO 806 802 577 ljl0 F52 654 
10%X 245 442 344 134 086 306 3i8 2G6 232 
iO"SXY 226 087 212 115 0 053 112 Oi1 0 

The considered problem occurs in investigations of rock burst, in the development of the 

theory of finite-width cracks, as well as in the investigation of the strength of machine com- 

ponents with rectangular grooves. 

The author thanks G. P. Cherepanov for formulating the problem. 

1. 

2. 

3. 

4. 

REFERENCES 

CHEHEPANOV G.P., Mechanics of Brittle Fracture. Moscow, "Nauka", 1974. 

MUSKHELISHVILI I.I., Certain Fundamental Problems of the Mathematical Theory of Elastic- 

ity. Groningen, Noordhoff, 1953. 

LAVBENT'EV M-A., and SHABAT B.V., Methods of the Theory of Functions of a Complex Variable. 

Moscow, "Nauka", 1965. 

SAVIN G.N., Stress Distribution Around Holes. (English translation), Pergamon Press, Book 

No. 09506, 1961. 

Translated by J.J.D. 


